# Quantum Complexity and Entanglement 

Ariadna Venegas Li

June 2, 2016

Motivation
Context
Quantum Advantages
The Two Biased Coins

## Entanglement

Measurements of entanglement

Examples
Biased Coins
Even
Golden Mean

Towards Interpretation

## Context: the q-machine

- A set of states $\left\{\left|\eta_{k}(L)\right\rangle\right\}$ :

$$
\left|\eta_{j}(L)\right\rangle=\sum_{w^{L} \in|\mathbf{A}|^{L}} \sum_{\sigma_{k} \in \mathbf{S}} \sqrt{\operatorname{Pr}\left(w^{L}, \sigma_{k} \mid \sigma_{j}\right)}\left|w^{L}\right\rangle\left|\sigma_{k}\right\rangle
$$

- Q-machine's initial state:

$$
\rho=\sum_{i} \pi_{i}\left|\eta_{i}(L)\right\rangle\left\langle\eta_{i}(L)\right|
$$

## What can the $Q$ give us?

- We've seen $C_{q} \leq C_{\mu}$
- But now we have the full machinery of a quantum system, what else can it give us?


## Entanglement

- An exclusively quantum resource.
- It makes quantum information and quantum computation a lot more interesting.


## Biased Coins Process



Figure: Biased Coins

## Biased Coins Process

Biased Coins


## Measurements of Entanglement

- Can we actually measure this thing?
- How about for bipartite systems?
- Pure states $\checkmark$
- Mixed states ... $\checkmark$ ?


## Entanglement of a pure state

- A quantum system composed of two parts labeled $A$ and $B$
- The entanglement of a pure state $\Phi$ is:

$$
E(\Phi)=S\left(\operatorname{Tr}_{A}|\Phi\rangle\langle\Phi|\right)=S\left(\operatorname{Tr}_{B}|\Phi\rangle\langle\Phi|\right)
$$

- But what does it mean?


## Bell States

$$
\begin{aligned}
& \left|e_{1}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \left|e_{2}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
& \left|e_{3}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
& \left|e_{4}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

## Entanglement of Formation

- Take any of the Bell states (e.g. the singlet) as the standard state.
- Imagine you are given a large number $m$ of this Bell state. By means of a (LOCC) protocol you can create $n$ copies of state $|\Phi\rangle$.
- Entanglement of formation is the minimum ratio $m / n$ in the limit of large $n$.
- Schematically:

$$
n E(\Phi) \times \text { Bell } \rightarrow n \times|\Phi\rangle
$$

## EoF for mixed states

- A mixed state: $\rho=\sum_{j=1}^{N} p_{j}\left|\Phi_{j}\right\rangle\left\langle\Phi_{j}\right|$
- So we could say:

$$
E(\rho)=\sum_{j} p_{j} E\left(\Phi_{j}\right)
$$

...but not really

## EoF for mixed states

The following mixed state:

$$
\rho=\frac{1}{2}(|00\rangle\langle 00|+|11\rangle\langle 11|)
$$

Can be a mixture of:

$$
|00\rangle
$$

or a mixture of:

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)
\end{aligned}
$$

## EoF for mixed states

$$
E(\rho)=\inf \sum_{j} p_{j} E\left(\Phi_{j}\right)
$$

For a pair of qubits:

$$
E(\rho)=\epsilon(C(\rho))
$$

Where $C$ is the concurrence and:

$$
\begin{gathered}
\epsilon(C)=h\left(\frac{1+\sqrt{1-C^{2}}}{2}\right) \\
h(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)
\end{gathered}
$$

## Concurrence

- The concurrence can be regarded as a measure of entanglement in its own right.
- For a pure state:

$$
C(\Phi)=|\langle\Phi \mid \Psi\rangle|
$$

With: $|\Psi\rangle=\sigma_{y}\left|\Phi^{*}\right\rangle$

- For a mixed state

$$
C(\rho)=\inf \sum p_{j} C\left(\Phi_{j}\right)
$$

## Biased Coins Process

Biased Coins


## Even Process

Even Process


## Golden Mean Process

Golden Mean



Even Process



## Some considerations about EoF

- EoF has several advantages:
- It has a very sound interpretation
- It reduces to the standard measure of entanglement for pure states
- Formula for 2 qubits
- And some disadvantages:
- Not trivial for other size systems
- Ratio problem


## Towards Interpretation

- As opposed to the general case of two qubits, our states have several constraints.
- Can we have maximally entangled states?
- One has to consider the fact that the two spaces look the same but are not the same.
- What does it tell us about the process? Can we do something with this?
- Other measurements?
- How can we handle larger Hilbert spaces?
- ???


## References

- J. Mahoney, C. Aghamohammadi, J. Crutchfield. Occam's Quantum Strop. Scientific Reports 6:20495(2016).
- W. Wootters. Entanglement of Formation and Concurrence. Quantum Information and Computation, Vol. 1, No. 1. 27-44 (2001).
- S. Hill, W. Wootters. Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 78, 5022 (1997).
- M. Nielsen. On the unitos of bipartite entanglement. arXiv:quant-ph/0011063v1 (2008).
- M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. CUP (2000).

Thank You!

