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Context: the q-machine

I A set of states {|ηk(L)〉}:
|ηj(L)〉 =

∑
wL∈|A|L

∑
σk∈S

√
Pr(wL, σk |σj)|wL〉|σk〉

I Q-machine’s initial state:
ρ =

∑
i
πi |ηi (L)〉〈ηi (L)|



What can the Q give us?

I We’ve seen Cq ≤ Cµ

I But now we have the full machinery of a quantum system,
what else can it give us?



Entanglement

I An exclusively quantum resource.

I It makes quantum information and quantum computation a
lot more interesting.



Biased Coins Process

Figure: Biased Coins



Biased Coins Process



Measurements of Entanglement

I Can we actually measure this thing?
I How about for bipartite systems?

I Pure states X
I Mixed states ... X?



Entanglement of a pure state

I A quantum system composed of two parts labeled A and B

I The entanglement of a pure state Φ is:

E (Φ) = S(TrA|Φ〉〈Φ|) = S(TrB |Φ〉〈Φ|)

I But what does it mean?



Bell States

|e1〉 =
1√
2

(|00〉+ |11〉)

|e2〉 =
1√
2

(|00〉 − |11〉)

|e3〉 =
1√
2

(|01〉+ |10〉)

|e4〉 =
1√
2

(|01〉 − |10〉)



Entanglement of Formation

I Take any of the Bell states (e.g. the singlet) as the standard
state.

I Imagine you are given a large number m of this Bell state. By
means of a (LOCC) protocol you can create n copies of state
|Φ〉.

I Entanglement of formation is the minimum ratio m/n in the
limit of large n.

I Schematically:

nE (Φ)× Bell → n × |Φ〉



EoF for mixed states

I A mixed state: ρ =
N∑
j=1

pj |Φj〉〈Φj |

I So we could say:

E (ρ) =
∑
j

pjE (Φj)

...but not really



EoF for mixed states

The following mixed state:

ρ =
1

2
(|00〉〈00|+ |11〉〈11|)

Can be a mixture of:

|00〉

|11〉

or a mixture of:

1√
2

(|00〉+ |11〉)

1√
2

(|00〉 − |11〉)



EoF for mixed states

E (ρ) = inf
∑
j

pjE (Φj)

For a pair of qubits:

E (ρ) = ε(C (ρ))

Where C is the concurrence and:

ε(C ) = h(
1 +
√

1− C 2

2
)

h(x) = −x log2 x − (1− x) log2 (1− x)



Concurrence

I The concurrence can be regarded as a measure of
entanglement in its own right.

I For a pure state:
C (Φ) = |〈Φ|Ψ〉|

With: |Ψ〉 = σy |Φ∗〉
I For a mixed state

C (ρ) = inf
∑

pjC (Φj)



Biased Coins Process



Even Process



Golden Mean Process









Some considerations about EoF

I EoF has several advantages:
I It has a very sound interpretation
I It reduces to the standard measure of entanglement for pure

states
I Formula for 2 qubits

I And some disadvantages:
I Not trivial for other size systems
I Ratio problem



Towards Interpretation

I As opposed to the general case of two qubits, our states have
several constraints.

I Can we have maximally entangled states?

I One has to consider the fact that the two spaces look the
same but are not the same.

I What does it tell us about the process? Can we do something
with this?

I Other measurements?

I How can we handle larger Hilbert spaces?

I ???
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